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CONVECTIVE HEAT AND I~SS TRANSFER OF 

REACTING PARTICLES AT LOW PECLET N~ERS 

P. A. Pryadkin UDC 532.72 

~le problem of convective diffusion to a spherical particle in a gas is solved 
under the condition that the surface chemical reaction rate depends on the reagent 
concentration near the surface. 

The first five terms of the asymptotic expansion in the low Peclet number have been 
obtained for the medium Sherwood number. Certain specific cases of the surface reaction 
have been analyzed. 

At low Peclet numbers the problem of heat and mass transfer of a solid sphere around 
which a stationary Stokes stream flows, was first investigated by the method of joined asymp- 
totic expansions in [i]. Constancy of the concentration was assumed far from the particle 
and on its surface. For the medium Sherwood number the first five terms of the asymptotic 
expansion were obtained. The extension of this problem to the case of a particle of arbi- 
trary shape was made in [2], where a three-term expansion in the Peclet number was obtained 
for the medium Sherwood number. An analogous problem was considered in [3, 4] for a sphere, 
where expressions [5] obtained by the method of joined asymptotic expansions in the low 
Peclet number were utilized for the fluid velocity field, Convective diffusion to a sphere 
and particle of arbitrary shape around which a homogeneous translational stream flows during 
the progress of an isothermal reaction of the first kind on its surface was examined in [6, 
7]. The mass transfer of a sphere during the progress of a chemical reaction of the first 
and second orders on its surface is investigated in [8]. The problem with arbitrary surface 
reaction kinetics was considered in [9] in the case of Stokes flow around the sphere. 

It is assumed that the Reynolds number R =aU/9 and Peclet number P =aU/D are small (for 
a gas the Schmidt number is Sc =9/D =O(I) A chemical reaction with a finite reaction rate 
F(c*) proceeds on the particle surface where the function F is governed by a heterogeneous 
reaction mechanism. Thus, for a reaction of order ~ F =ka-lc~D(c*/c~)~. 

The process of reagent transport is determined by the convective diffusion equation 
and the boundary conditions which have the following form in dimensionless variables in a 
spherical r, e coordinate system coupled to the particle: 

C~ - -  C *  P 0(~, c) _ A c ,  c - -  , ~ = c o s 8 ,  (1) 
r 2 O(r, ~) c= 

r--~oo,  c - * 0 ;  r : l ,  O c / O r = f ( c ) ,  f ( c ) - ~ - - - a ( c = D ) - i F ( c * )  �9 (2)  

He re  a and  U a r e  s e l e c t e d  as  t h e  s c a l e s  o f  t h e  d i m e n s i o n l e s s  q u a n t i t i e s .  
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Fig. i. Functions a) q(k), 
b) Sh(k) for P =0.i (8 =0, 
~), c) Sh(k) for P =0.5 (B = 
O, ~). 

Expressions obtained for drops by the method of joined asymptotic expansions [I0] were 
used for the velocity field 

1 ( r - - - I )  r 1-}- = ~ o + R %  ~ o = - - i - -  2 ~ + 1  , 

1 3[3+2 1 313 q-2 ( r - -  1) [r 1 [3 1 [3 ( 
*~-- 8 [3+1 *o 16 [3+1 2 [3+1 10 ([5+1) z 

1 ) ]  sinZO, 
Y 

f Y 2 
sin Z O cos O. 

(3) 

The value ~ = ~ corresponds to a solid sphere, and 8 =0 to a gas bubble. The expression (3) 
is valid in the inner flow domain r ~O(R-I). Moreover, the problem (1)-(3) is supplemented 
by a formula for the stream function in the inner stream domain for r ~O(R -I) (the appropri- 
ate e~ression is presented in [I0]). 

The boundary value problem (1)-(3) was investigated by the method of joined asymptotic 
expansions in a low Peclet number. Here the whole flow domain was divided into two subdo- 
mains: inner l~r~O(P -~) and outer O(P -1)~r. As usual, "compression'' of the coordinate 
p =Pr is introduced in the outer domain, and the solution is sought separately in each sub- 
domain in the form of inner and outer expansions. The boundary condition on the particle 
surface was used in constructing the asymptotic solution in the inner domain, and the bound- 
ary condition at infinity in constructing the solution in the outer domain~ the unknown 
constants that occur during the solution are determined by joining. 

Obtaining and solving the equations governing the terms of the outer and inner asymptot- 
ic expansions is described in detail in [1-9]. Omitting intermediate computations, we 
present only the final results for the main characteristics of the mass transfer process of 
drops (or solid particles) with a gas-medium Sherwood number stream: 

S h  -- 

1 

4 a a D c ~  2 . ~ r  r=l 2 t~-}- 1 
- - I  

3[3 q- 2 L pz In P q- q { 1 27132q-3713-~ - 12+ 12to[3z+ 15;~[3q-4;~ 
[3+ 1 Eq- 1 24- ([3+, 1)z(2-i-L) 

1 {[717)~z[3 z q- 3099~.[3z~ ,-}- 324013 z q- 4440[5 + 1440 if- 1120;~z[3 
1 + ~  

q- 480)~ z ,-q- 4520~.[3 + 1200~.] [2880([~ q- 1) z (2 q- ~)]-~ + A}} pz 

1 313 + 2 Xz _ q _ _ .  p3 In P q- 0 (p3), 
s  (-[3+ + + 12 1) (1 K)z 1 ~. 
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A =  ~ {3~q---2 I 1 Sc 12 . . I ~ + 1 (Sc+ 1 ) 2 ( S c . 2 ) l n ( l + S c - ~ ) - - S c 2 +  2 

] 3 % } i  [I 1 (3~+4) 2 ] 25 2? - -  + %lq --q--- 
+ 6---~- - -  1 + % -8--  (1 -[- ~)2 48 (~ H- 1) 2 (~ -J- 2) ~ ' 

= If'  ( ~ h : ~ ,  ~ = I I"(~l~=~.  (4)  

Here I is the total diffusion flow per particle; y =0.5772..., Euler constant; and q, root 
of the algebraic equation 

- - q  = f(q). (5) 

The expressions obtained extend the results of [1-9]. In particular, for B = ~ and 
arbitrary f the three first terms of the expansion for the number Sh were obtained in [9], 
which agree for f =--k(l -- c) with the results in [6-8]. 

Dependences of the She~mod number (Sc = i) on the reaction rate constant k in the case 
of progress of the reaction on the particle surface according to a power law f(c) = --k(l -- 
c)~ are represented in the figure for values of ~ =1/2, i, 2 (curves i, 2, and 3, respec- 
tively) and B =0, ~ (the dashed lines in Fig. ic correspond to the value ~ =0, and the solid 
lines to B =~; all the curves in Figs. la and b correspond to B =0, ~). Here the dependence 
of the root q(k) is presented in Fig. la. The valued=l/2 corresponds to a heterogeneous 
reaction of carbon with oxygen proceeding on the surface of a coal particle [ii], while for 
B =0 the corresponding curves characterize the heat transfer of bubbles in liquid metals 
where the Schmidt number is Sc ~i. 

NOTATION 

a, particle radius; U, velocity of particle motion; ~, viscosity; D, diffusion coeffi- 
cient; c*, concentration; c~, concentration far from the particle; k, reaction rate constant; 
~, order of the reaction; B, ratio between the viscosities of the drop and the surrounding 
liquid; ~, dimensionless stream function; Sh, She~mod number; R =aU/~, Reynolds number; 
P =aU/D, Peclet number, and Sc =~/D, Schmidt number. 
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